Projekt Terrestrial Energy: budou reaktory chlazené
solí vyrábět vodík?
13.9.2018 Jak uvádějí zahraniční zdroje i český ÚJV Řež,
celosvětově se dnes většina vodíku (cca 95 %) vyrábí s fosilních paliv
(v první řadě parním reformingem zemního plynu, dále parciální oxidací
nižších uhlovodíků a v poslední řadě jako vedlejší produkt při
zkapalňování či zplyňování uhlí). Všechny tyto procesy jsou doprovázeny
výraznými emisemi oxidu uhličitého, což je mj. výzvou pro
palivočlánkovou elektromobilitu. S rozvojem vysokoteplotních reaktorů
IV. generace se nabízí otázka, zda by jej nešlo vyrábět efektivněji a
ekologičtěji právě v těchto reaktorech. Odpověď by měl přinést dvouletý
projekt společnosti Terrestrial Energy ve spolupráci s americkou
energetikou Southern Company a laboratořemi amerického Ministerstva
energetiky (DoE), o němž byla odborná veřejnost informována na začátku
září 2018. 
Terrestrial Energy v současné době intenzivně připravuje
komercializaci svých reaktorů chlazených solí typu IMSR
(viz průřez
reaktorem na obrázku nahoře).
Reaktor chlazený solí používá jaderné palivo rozpuštěné
v roztavené soli fluoridu nebo chloridu. Protože tato palivová sůl je
tekutá, funguje jednak jako palivo produkující teplo, a jednak jako
chladivo dopravující teplo ven z reaktoru až do elektrárny. To mimo
jiné znamená, že takovýto reaktor nemůže postihnout ztráta chladiva,
která nakonec vede až k jeho roztavení s následnou katastrofou.
Reaktory typu MSR patří mezi tzv. reaktory IV. generace. Společné pro tyto
reaktory je zvýšení účinnosti při výrobě elektřiny ze současných cca 33
% na 40 a více procent, 100- až 300krát vyšší využití energetického
obsahu štěpených jader, možnost využití vyhořelého paliva ze současných
reaktorů, snížení obsahu zbytkové radioaktivity ze současných tisíců
let na stovky let a jejich vyšší pasivní bezpečnost. Teplo reaktoru lze
kromě výroby elektrické energie využít i k dalším účelům, ať již k
průmyslové výrobě tepla, nebo např. k výrobě vodíku pro palivové články.
Zmíněný dvouletý výzkumný a vývojový projekt má za cíl
prozkoumat účinnost, konstrukci a ekonomiku využívání reaktoru IMSR pro
výrobu vodíku v průmyslovém měřítku v kombinaci s tzv. hybridním
sírovým procesem. Terrestrial Energy se domnívá, že tento způsob
získávání vodíku z vody by mohl být účinnější než velmi rozšířené
vysokoteplotní parní reformování, tedy endotermní reakce metanu s vodní
párou za vyšších teplot při vzniku vodíku a oxidu uhelnatého.
Při hybridním sírovém procesu či cyklu (též Westinghouse
proces) probíhá dvoustupňová reakce, termochemická a elektrochemická
(odtud hybridní proces). Při termochemické reakci se za vysokých teplot
nad 800 °C rozkládá kyselina sírová na vodu, oxid siřičitý a kyslík.
Při elektrochemické reakci reaguje při nižších teplotách (80 – 120 °C)
a přísunu elektrické energie oxid siřičitý s vodou a vzniká zpět
kyselina sírová a volný vodík. Při celé této dvoustupňové reakci tedy,
jak patrno, nevznikají oxidy uhlíku.
Projekt Terrestrial Energy by měl ukázat proveditelnost
propojení reaktoru IMSR a hybridního sírového procesu pro
velkoobjemovou komerční výrobu vodíku s nulovou produkcí skleníkových
plynů.
redakce
Proelektrotechniky.cz
Obrázek ©
Terrestrial Energy (převzato z World Nuclear News)
Další
informace zde
Přečtěte si také:
26.7.2018 Komercializace solí chlazeného reaktoru typu IMSR od kanadské společnosti Terrestrial Energy zaznamenala v červenci 2018
další krok ke svému cíli: Terrestrial Energy uzavřela dohodu s
kanadskou firmou L3 MAPPS, specializovanou na řídicí a simulační řešení
pro energetiku, letectví a kosmonautiku, na vývoj simulace v reálném
čase pro reaktor IMSR. 
2.7.2018 Během pouhých
14 dní vydaly čínské úřady v červnu 2018
dvě stručná oznámení o dosažení první řetězové štěpné reakce ve dvou
nových reaktorech: nejprve tímto výrazným milníkem v procesu spouštění
prošel blok typu EPR v provincii Kuang-tung, následně blok AP1000
ležící o 1500 km severněji v provincii Če-ťiang. Přestože podobných
zpráv chodí z Číny několik ročně, zaslouží si tyto dvě mnohem větší
pozornost. Jedná se totiž o premiéru dvou pokročilých reaktorů generace
III+, které by přicházely v úvahu i pro výstavbu nových zdrojů v
Temelíně a v Dukovanech. 
18.6.2018 Jedním z
perspektivních projektů tzv. malých reaktorů
(blíže k těmto technologiím viz například v nedávném článku o
spolupráci Domionion Energy a GE
Hitachi Nuclear Energy) patří
americký projekt NuScale od
dodavatele
NuScale Power. S jeho prvním využitím v provozu se počítá v roce 2023 a
na jeho technickém zdokonalování a zlepšování ekonomiky provozu se
stále pracuje. Svědčí o tom informace výrobce, publikovaná začátkem
června 2018, o možnosti významného zvýšení výkonu při minimálních
dodatečných nákladech. 
30.5.2018 Malé
reaktory jsou stále větší výzvou nejen v oblasti
technologie, ale především investic a provozní ekonomiky. Představují
totiž jednu z cest, jak bezemisní jaderné energetice přidat na
ekonomické efektivnosti a umožnit její provoz v rámci decentralizované
energetiky. Do financování projektů jejich vývoje se proto angažují i
dodavatelé energie. Důkazem je financování projektu malého modulárního
reaktoru BWRX-300 od GE Hitachi Nuclear Energy americkou energetickou
společností Dominion Energy, o němž byla odborná veřejnost informována
v květnu 2018. 
24.5.2018 Čtyřicet osm
zemí, tvořících region Subsaharská Afrika, vyrábí dnes zhruba tolik
elektrické energie jako Španělsko,
ačkoli tento region má osmnáctkrát větší počet obyvatel. Celkový výkon
elektroenergetických zdrojů připojených k rozvodné síti zde činí
pouhých 83 GWe, z toho polovina připadá na Jihoafrickou republiku.
Počet obyvatel v této části zeměkoule přitom rapidně roste. Jednou z
možností, jak uspokojit jeho potřebu elektrické energie, je rozvoj
jaderné energetiky, zejména pak malých reaktorů. Příležitosti a výzvy,
které jsou s tím spojené, rozebírá zpráva Atoms for Africa, kterou v
dubnu 2018 publikovalo Centrum globálního rozvoje. Z této zprávy dále
vyjímáme některé zajímavé momenty.

26.2.2018 Malé jaderné
reaktory jakožto perspektivní technologie
pro decentralizovanou bezemisní energetiku mají zelenou mimo jiné v
Kanadě s jejími rozlehlými územími a odlehlými sídly s potřebou
stabilních energetických zdrojů. Důkazem jsou dvě perspektivní
technologie těchto malých reaktorů NuScale a eVinci, které v únoru 2018
zahájily proces předlicenční revize dodavatelské konstrukce zařízení u
Kanadské komise pro jadernou bezpečnost (CNSC). 
15.1.2018 Čína je
jednou ze zemí, které budoucnost svojí
energetiky staví na rozvoji moderních jaderných technologií. Důkazem je
600MWe experimentální reaktor s rychlými neutrony (FNR), s jehož
stavbou započala Čínská národní jaderná společnost (CNNC) a její
dodavatel China Nuclear Industry 23 Construction Co Ltd. na konci roku
2017 v Xiapu, v provincii Fujian. Navazuje tak na 65MWt/20MWe reaktor
CEFR (Chinese Experimental Fast Reactor),
který je již několik let připojen k síti. 
19.12.2016 Jedním z
trendů v rozvoji jaderných technologií směrem k
ekonomickému komerčnímu provozu jsou malé
reaktory. O jejich
využití je v současnosti zájem nejen v USA,
Kanadě či
Velké Británii, ale hlásí se o ně
také ruská města, která by ráda tuto technologii
využila pro kombinovanou výrobu elektřiny a tepla neboli kogeneraci.
Světová odborná veřejnost o tom byla informována na začátku prosince
2016. 
9.12.2016 Hlavním
trendem technologického vývoje jsou tzv. malé
reaktory a
reaktory IV. generace.
Propojení
obou těchto významných trendů v sobě zahrnuje projekt malého reaktoru
typu MTGR montrealské společnosti StarCore Nuclear, která zahájila na
konci října 2016 proces revize designu u Kanadské komise pro jadernou
bezpečnost (CNSC). 
31.8.2016 Malá
modulární elektrárna NuScale, jejíž aktuality na
našem portále průběžně sledujeme, je jedním z projektů tzv. malých
reaktorů,
které – vedle reaktorů IV. generace
– představují
významný vývojový trend v jaderné energetice. Jejím dodavatelem je
americká projektová firma NuScale Power. První instalace této
elektrárny se plánuje poblíž města Idaho Falls v americkém státě Idaho
na severozápadě USA. Ekonomická studie projektu, prezentovaná v
polovině srpna 2016, poprvé blíže vyčísluje celkové investiční náklady
a přínosy pro místní ekonomiku v podobě nově vzniklých pracovních
míst. 
25.8.2016 Malé reaktory
jsou, vedle reaktorů IV. generace,
jedním z
důležitých vývojových směrů ve vývoji jaderné energetiky. V souvislosti
s výzvou prezidenta GE Hitachi Nuclear Energy americké vládě a
podnikatelské sféře k podpoře komercializace moderních jaderných
technologií byl v srpnu 2016 na Aspen Institute prezentován odborné
veřejnosti jeden z konceptů těchto reaktorů, malý reaktor
PRISM. 
21.12.2015
Elektrárna
NuScale,
jejíž
přípravu na komerční provoz na našich stránkách průběžně sledujeme, je
jedním z projektů tzv. malých reaktorů,
které
představují významný vývojový trend v jaderné energetice. Významným
krokem k jejímu uvedení do provozu se stala začátkem prosince 2015
dohoda mezi jejím dodavatelem NuScale Power LLC a společností Areva Inc
na výrobu palivových souborů pro tento projekt. 
10.12.2015
Evropská environmentální organizace (European
Environment Agency, EEA) zveřejnila v prosinci svoji zprávu o kvalitě
ovzduší v Evropě č. 5/2015. Tato zpráva analyzuje stav kvality ovzduší
v roce 2013 a jeho vývoj od roku 2004. Zpráva vychází z oficiálních dat
o monitorování kvality ovzduší v různých místech Evropy. 
3.11.2015 Malé reaktory jsou,
vedle reaktorů IV. generace, jedním z důležitých vývojových směrů ve
vývoji jaderné energetiky. Jako perspektivní směr je vnímá rovněž Velká
Británie, která je zároveň evropským leadrem v oblasti využívání větrné
energie jakožto důležitého obnovitelného zdroje.
O spolupráci na rozvíjení této
strategie projevila zájem americká elektrotechnická firma Westinghouse,
která tento svůj záměr prezentovala v říjnu 2015. 

|